Newton's second law

$$
\left.\begin{array}{c}
a \sim F \\
a \sim \frac{1}{m}
\end{array}\right\} a \sim \frac{F}{m}
$$

$$
F \sim m \cdot a
$$

$$
F=m \cdot a
$$

Examples

1)On a mass of 50 kg we have a net force of 250 N . What is the acceleration?

Given : $m=50 \mathrm{~kg} ; F_{\text {res }}=250 \mathrm{~N} \quad$ Find $: a$
Solution : $F_{\text {res }}=m \cdot a \quad a=\frac{F}{m} \quad a=\frac{250 \mathrm{~N}}{50 \mathrm{~kg}}=5,0 \frac{\mathrm{~N}}{\mathrm{~kg}}$
2)A car, which has a mass of 1500 kg , drives on the freeway and has a speed of $110 \mathrm{~km} / \mathrm{h}$. He accelerates to $120 \mathrm{~km} / \mathrm{h}$ during 5 seconds. There is a frictional force of 500 N

Draw the forces at the centre of mass in this picture of a car.

Examples (2)

Sum of the vectors: $\quad \vec{F}_{R}=\vec{F}_{g}+\vec{F}_{n}+\vec{F}_{m}+\vec{F}_{f}$

$$
\text { x-axis: } \quad \vec{F}_{f}+\vec{F}_{m}=m \cdot \vec{a}_{x}
$$

Y-axis: $\quad \vec{F}_{n}+\vec{F}_{g}=m \cdot \vec{a}_{y} \quad \longrightarrow \quad F_{R, y}=0$
$a_{x} ?$
want $a_{y}=0$
$v_{0}=110 \mathrm{~km} / \mathrm{h}=30,6 \frac{\mathrm{~m}}{\mathrm{~s}} ; v=120 \mathrm{~km} / \mathrm{h}=33,3 \frac{\mathrm{~m}}{\mathrm{~s}} ; t=5,0 \mathrm{~s}$
$v=a . t+v_{0} \quad a=\frac{v-v_{0}}{t}=\frac{33,3-30,6}{5,0}=0,54 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

Examples (2)

$$
F_{R, x}=m \cdot a_{x}=1500 \mathrm{~kg} \cdot 0,54 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=8,1 \cdot 10^{2} \mathrm{~N}
$$

What is the force of the motor?

$$
\begin{aligned}
& \vec{F}_{w}+\vec{F}_{m}=m \cdot \vec{a}_{x}=\vec{F}_{R, x} \\
& \vec{F}_{m}=\vec{F}_{R, x}-\vec{F}_{w} \\
& F_{m}=8,1 \cdot 10^{2} \mathrm{~N}+500 \mathrm{~N}=1,3 \cdot 10^{3} \mathrm{~N}
\end{aligned}
$$

